
A new binary alternatives system

for Linux/Unix

Hans-Georg Eßer
LinuxUser, Editor-in-chief

h.g.esser@linux-user.de

September 22, 2003

Abstract

This paper presents a new concept for binary (program) alternatives
that will aid Linux/Unix users in defining generic default programs for
every task that allows multiple programs (such as: editor, mail client, web
browser, etc.). While hiding the range of available programs and defaulting
to a chosen editor, whatever editor launch command was used, it will still
be possible to launch all installed programs.

1 Analysis of the current situation

Today Linux users are faced with a huge number of applications for most in-
teresting tasks; e. g. there are lots of editors, mail clients, word processors, web
browsers, etc.

Especially newbie Linux users find it disturbing to have to search through a
list of menu items in the start menu in order to find a program for a given task.
It is not simplifying the problem that the relevant menu entries often show the
program name only: how would one deduce from an entry named “Kate” that
this entry will launch an editor?

A user who knows what specific program he wants to start and happens to
know the binary name as well, has no problem to launch this program by issuing
a command on the shell. However, many applications start helper applications,
and those might default to a program which is not the tool of choice of the
user. In most cases it is possible to change the default behavior (even though
occasionally it is not), but the procedures to change the default program vary as
much as did the different GUI styles of X Window programs before the advent
of standardized desktop environments such as KDE and GNOME.

1.1 Default programs set through environment variables

The standard Unix way to influence program behavior, including the setup of
standard helper applications, is setting an environment variable that is evalu-
ated in order to determine the default application for a given task; the most
widely used example is that of the EDITOR variable.

This used to be a convenient way to solve the problem when Unix was
primarily a text mode operating system and X Window was mostly a tool to
display several xterm windows on one screen.

Further examples for these program definitions are PAGER (typically point-
ing to more or less) which is used by e. g. man and SHELL.

In a way, the variables PATH, MANPATH, INFOPATH, and LD LIBRARY
PATH have similar functions, in that they define a search order: when you type
“vi” and you have two different versions /bin/vi and /usr/local/bin/vi, it
will depend on the order in the PATH which version is going to be executed.

Usefulness of these variables is obviously restricted to applications that make
use of them.

1.2 Debian alternatives

The Debian GNU/Linux distribution maintains a directory /etc/alternatives/

which holds symbolic links to binaries in their standard places, e. g. there is a
link pager pointing to /usr/bin/less.

The tool update-alternatives(1) can be used to display and change in-
formation about known alternative programs, e. g.

/usr/sbin/update-alternatives --display pager

pager - status is auto.

link currently points to /usr/bin/less

/bin/more - priority 50

/usr/bin/less - priority 77

slave pager.1.gz: /usr/share/man/man1/less.1.gz

/usr/bin/w3m - priority 25

slave pager.1.gz: /usr/share/man/man1/w3m.1.gz

Current ‘best’ version is /usr/bin/less.

By giving programs priorities it is not necessary to define a standard appli-
cation; instead the program with the highest priority is chosen.

1.3 Red Hat’s “BlueCurve” desktop

With their 8.0 version Red Hat introduced the new BlueCurve desktop that
makes KDE and GNOME look alike, cf. [Fio03, Tay03]. Another main feature
is how they changed the start menu entries: Instead of giving the applications’
names (as is the standard), menu entries are descriptive, e. g. System tools/CD
writer instead of System tools/XCDroast.

Both changes shall aid new users in finding their ways around the Linux
desktop without being confused by program names which do not always describe
the program functions: A user new to Linux will not guess that “Konqueror”
and “Nautilus” are file managers.

While standardizing menu entries and making them more self-explanatory
is a useful step in helping new users (though Red Hat was criticized much for
altering KDE and GNOME), it does not solve the problem of the wide range
of helper applications launched by programs.

2 A new approach

In the OS News article [Sch03], Adam Scheinberg describes a collection of
changes to Linux systems that would be needed in order to make Linux more
accessible to new users. This paper is mainly motivated by the following sug-
gestion from the article:

Perhaps the way to get system-wide default is to have a given direc-
tory, say, /system/commands, that appears to be the equivalent of
/usr/local/bin or /usr/bin – that contains the executables from
the command line. Except, in our distro, the real files are kept
in /system/bin. /system/commands is full of aliases. Then, when
you change your default browser through our control panel – all the
known browser commands – konqueror, mozilla, opera, galeon
... they all change to aliases of your selected browser.

An implementation of this approach would have to move all binaries from
directories in the search path, add a new standard executable directory with
placeholders for all moved binaries which would be links to default programs.

This approach has some design flaws:

• When a program is referred to by a full path name, e. g. /usr/X11R6/
bin/xemacs, moving that file to a different location will break the calling
application.

• Changing a standard application will require all links in /system/commands

to be altered in order to reflect the change.

• There is no central configuration file or database that contains a list of
classes of programs and the standard program for each subset of “similar”
programs.

In this paper we present an approach that picks up Scheinberg’s idea, but
fixes these three flaws and allows for user-friendly and logical configuration of
the program alternatives and defaults.

2.1 Linux Alternatives framework

Our new framework, called “Linux Alternatives framework” consists of five
parts:

• a concept of “program classes”. As an example, an “editor” class would
consist of a list of programs and attributes of each of the programs. These
attributes will be things such as: is this program an X or a terminal
application, how are they invoked (command line arguments), etc.,

• a description of possible operations (modifications) on these classes and
its elements, together with a specification of a command-line tool that
shall handle these modifications,

• a suggestion for a file system structure that allows for the implementation
of these ideas,

• a specification for configuration files,

• and finally a simple but working implementation.

2.1.1 Program classes

Programs which fulfill the same task, are grouped in program classes. That
way, all the editors would belong to an “editor” class. Every member of the
class can have special attributes (properties); such attributes can be flags (such
as “is an X Window application” and “is a console application”), original path
name (e. g. /bin/vi) for later restoration, or special command line options to
be provided for starting as X or console application (e. g. xemacs understands
the option “-nw” that makes it run as a console application).

A formal representation of an “editor” class could be like this:

class Editor {

comment "Text editor"

defaultX Emacs

defaultC Vi

member Emacs {

comment "Eight megabytes almost continuously swapping"

path /usr/X11R6/bin/emacs

isX true

isC true

optX ""

optC "-nw"

}

member Vi {

comment "Visual Editor"

path /bin/vi

isX false

isC true

optC ""

}

member KEdit {

comment "KDE Editor"

path /opt/kde3/bin/kedit

isX true

isC false

optX ""

}

}

In the intended new framework, trying to execute any of these three editors
from X Window would launch Emacs, while trying the same on a console (or

in a terminal window with no DISPLAY set) would start Vi. It is irrelevant
whether the program call included the full path name or not.

2.1.2 Class operations

Program classes can be created, modified and removed. The creation of a class
requires an identifier and an optional comment:

lxa-create (id class_id, string comment)

Several types of modification of an existing class are possible: a new member
can be added, an existing one removed, the default X and console program
set and unset (being unset means that no replacements take place), and the
comment and class name can be changed:

lxa-add (id class_id, id member_id, path member_path,

string member_comment, boolean isX, isC,

string optX, optC)

lxa-remove (id class_id, id member_id)

lxa-rename (id class_id, id new_id)

lxa-comment (id class_id, string new_comment)

lxa-defaultX (id class_id, id member_id)

lxa-defaultC (id class_id, id member_id)

lxa-nodefaultX (id class_id)

lxa-nodefaultC (id class_id)

A proposed command line call of “lxa-create”, “lxa-add”, and “lxa-defaultC”
might look like this:

lxa create Editor -c "Text editors"

lxa add Editor Vi -p /bin/vi -c "Visual Editor" -C

lxa add Editor xemacs -c "X Emacs" -X -C

lxa defaultC Editor Vi

(Using options instead of a fixed ordered list of parameters allows for omit-
ting parameters that are not required. The second “add” call adds xemacs

and finds the path on its own; member name and binary name are identical
here. However, it makes sense to explicitly give the path in case there are two
identically named binaries in different directories.)

2.1.3 Class activation

For the convenience of allowing different users different setups it makes sense
to introduce a notion of activiation state: A class can be active or inactive, and
this state can be set globally (in the class definition) as well as locally (in a user
configuration file).

For the global settings, the class description is augmented with an active
keyword:

class Editor {

comment "Text editor"

active true

defaultX Emacs

defaultC Vi

member Emacs {

...

The lxa tool will then allow two new commands to work on classes:

lxa activate class

lxa deactivate class

When called this way by the system administrator, changes will be made to
the class configuration file: This will be a global change of settings.

On the other hand, non-root users can activate and deactivate classes on
their own. A configuration file ~/.lxarc will hold information about active
and inactive classes. The default behavior is to use the global settings which
can be overwritten by the user. Only after a user has issued an lxa activate

or lxa deactivate command, will an entry be made to his local configuration
file. To give up the local control over a class and return to the settings made
by the administrator, the command

$ lxa useglobal class

can be used. This is not an option for the administrator.
If root wants to change settings for the root account but not globally, he

must create the file /root/.lxarc manually and enter activity or inactivity
statuses himself, the syntax in this file (as also in the users’ ~/.lxarc files) is
simple:

Class: active|inactive

2.1.4 File system structure

In order to allow for compatibility with all Linux distributions and other Unix
operating systems, a new directory /usr/lxa will be used to hold all program
data; only configuration files will be held in /etc/lxa.

• /usr/lxa/bin: This directory holds the two files lxa, lxa-choose. lxa

is the configuration tool which is used for creation, modification, and
deletion of program classes.

• /usr/lxa/alternatives: This is the target directory where all executa-
bles are moved on class inclusion. After setting up an editor class, binaries
vi, emacs, xemacs, kedit, nedit, jedit, xedit, kate, ... will be found
here.

• All files moved to /usr/lxa/alternative will be replaced with same-
named symbolic links to /usr/lxa/bin/lxa-choose.

• /etc/lxa: This directory contains two configuration files, a general Linux
Alternatives configuration lxa.conf and the class database classes.

conf.

When adding a program to a class, it will be removed. For safety purposes a
copy will be kept in a subdirectory named .lxa of the original directory. Thus,
completely removing Linux Alternatives from a machine will be as simple as
removing the /usr/lxa and /etc/lxa hierarchy and copying all .lxa/* files to
their parent directories.

Note that all progam files are still available in the /usr/lxa/alternatives

directory which should not be included in the PATH variable.

lxa info emacs

emacs=/usr/X11R6/bin/xemacs : class Editor [Text Editors]:

c-C- Vi Visual Editor

/usr/lxa/alternatives/vi (/bin/vi)

cx-- Emacs Eight megabytes almost continuously swapping

/usr/lxa/alternatives/emacs (/usr/X11R6/bin/emacs)

cx-- XEmacs X Emacs

/usr/lxa/alternatives/xemacs (/usr/X11R6/bin/xemacs)

2.2 Quick and dirty implementation

As a proof of concept we have created a Python-based implementation that
handles all features described above. In most cases this implementation should
be sufficient, but if many binaries are going to be replaced and called often (e. g.
from scripts), a reimplementation in C or C++ and use of an optimized lookup
scheme would give improvements in execution time.

The package will be available from http://lxa.hgesser.com/ from Septem-
ber 15, 2003.

2.2.1 How it works

The technology behind the implementation is simple. When a program is called
which belongs to one of the LXA classes, in fact /usr/lxa/lxa-choose will be
started. By evaluating the variable 0 this script will know which program
name was supplied on the command line. It will look up this name in the
class database, evaluate DISPLAY to see if an X Window display is available,
and then decide on this and the class information which program in /usr/lxa/

alternatives/ to start. Command line arguments from the original call are
supplied to the real binary, and additional arguments are added if these were
defined in the member definition (optX and optC).

3 Integration with Linux distributions

To allow for easy integration with current Linux distribution types, there must
be a way to combine package installation and removal with respective operations

on the class definitions. RPM and Debian based distributions can handle this
through post-install scripts which alter the class file after successful installation
of a new package or removal of one.

If the execution of post-install and pre-uninstall scripts is impossible or not
wanted, it is possible to go another way: Instead of writing all class informa-
tion to a configuration file /etc/lxa/classes.conf, a directory /etc/lxa/

classes/ can be used which holds separate files each of which defines one pro-
gram and its membership in a class. Then each of these files will be part of a
software package: Installing and removing such a package will include creating
and removing a class membership definition.

For source based packages (e. g. those with the standard configure, make,
make install procedures) class configuration can be part of the install step, or
makefiles could be extended to have a classsetup target.

4 Problems and solutions

Four issues with this concept have been identified so far. They are minor
inconveniences which can be overcome if required.

4.1 Breaking integrity checks of package management tools

Modern Linux distributions use package management tools that can perform
integrity checks on installed packages. Obviously removing a binary that be-
longs to an RPM or Debian package and replacing it with a symbolic link will
break the integrity of the installed package.

If the packaging tool (rpm or dpkg) was aware of Linux Alternatives, it could
query the Alternatives database, find the replaced file and check it instead of
the original path.

Further, removing a package without previously removing its binaries from
all class definitions can break the Alternatives system. The original binary
will still be there (since it was moved to /usr/lxa/alternatives/). Now if
a user tries to call the removed program, this should lead to the normal error
message since in removing the package, the link from the binary’s old position
to lxa-choose will have been removed, too.

However if the removed package was defined as standard application for a
class, any attempt to start a different program in the same class may do one of
the following two things:

• Since the binary is still in the /usr/lxa/alternatives/ folder, the pro-
gram is going to start. That means that it will still be available even
though the packages was removed – which is not the desired behavior.

• If the program starts but cannot find required files which were part of the
removed package, it may break and give an unreasonable error message.

Thus the administrator should make sure that before or while removing a pack-
age all its binaries are removed from any class memberships as well.

4.2 Ignorance of the PATH

Most Linux distributions use different values for the PATH variable for root

and regular users, e. g. removing the .../sbin/ directories from the path of
regular users, thus primitively blocking attempts to call fdisk as non-root.
Typically programs which are out of the regular users’ path lack rights needed
for execution, e. g. the +x bit for “others”.

Joining privileged and non-privileged commands in one class could lead to
the effect that the chosen application cannot be executed by regular users. How-
ever, that is a question of defining the classes properly. For example, putting
fdisk and some (imaginary) command line tool for displaying disk settings in
one class would be a wrong attempt.

fdisk and cfdisk, on the other hand, could be joined in one class, which
will still cause problems if /usr sits in a partition of its own and is not mounted
on start-up due to a problem. Adding vitally important programs to classes
thus is not recommended. (Note that any program will still be available in
the .lxa/ subdirectory; thus a moved /sbin/fdisk can still be executed as
/sbin/.lxa/fdisk in case of a problem.)

4.3 Redundancy of menu entries

Implementing this concept leads to the situation that standard start menus
hold several entries for e. g. editors which will all launch the same editor, thus
making the menu redundant. However when a menu clearly states “Xemacs”,
“Nedit”, and so on, it is not the expected behavior that they should all start
the same program.

To remove the problem, after any change to the classes, the menu sys-
tem should be updated, too, then pointing to the real programs in /usr/lxa/

alternatives/.
In case of the KDE desktop, it is sufficient to search the /opt/kde3/share/

applnk/ hierarchy (which might me located elsewhere, e. g. in /usr/share/

applnk), grep for “Exec=...” lines and exchange the paths. The same holds for
GNOME which uses the same syntax for its menu entries. All other window
managers use plain text files that can be modified accordingly.

4.4 Unique names required

In the current implementation, binaries are moved to /usr/lxa/alternatives/.
If two binaries have the same name (since e. g. two different vi versions are avail-
able) one will overwrite the other if both are added to a class. However it is
possible to change this by checking and renaming.

5 Future extensions

Currently the only information about a program used in Linux Alternatives is
whether it is an X or console application. A possible extension is to describe
requirements, e. g. demanding that the user work locally rather than via an ssh

or other network connection. That way an X application may not be chosen
even though X forwarding was enabled. (Credits to my colleague Mirko Dölle
for this suggestion.)

Instead of defining standard X and terminal applications, programs could be
given priorities, as does the Debian Alternatives system (see section 1.2). Then
after checking whether an X or terminal application is needed, the program
that fulfills this requirement and has the highest priority would be chosen.

A graphical frontend might be nice, at least one that allows non-root users
to activate and deactivate classes and view the class definitions.

6 Summary

We have presented a system for definition of program classes that allows to
choose standard tools out of groups of similar applications both for X Window
and the console. A simple but working implementation is available, and minor
problems of this approach as well as possible extensions have been addressed.

References

[Fio03] Marco Fioretti. Hooray for Bluecurve. Linux Review / Linux Journal,
2003. http://www.linuxjournal.com/article.php?sid=6476.

[LXA03] LXA Linux Alternatives Project. Project web page. 2003.
http://lxa.hgesser.com/.

[Sch03] Adam Scheinberg. If I Had My Own Distro. OS News, 2003.
http://www.osnews.com/story.php?news_id=3431.

[Tay03] Owen Taylor. Configuring the Red Hat Linux Desktop. 2003.
http://people.redhat.com/otaylor/rh-desktop.html.

